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Abstract 

The ability to deploy huge numbers of low-cost robots for duties like surveillance and search has just become viable because to advancements 

in robotics. It is still difficult to solve the challenge of coordinating several robots to do such duties. Recent research papers on multi-robot 

systems are summarized in this report. It's divided into two sections.In the first section, we discussed research into the pattern formation 

challenge, or how to guide a team of robots to and through a coordinated configuration. The second section summarizes the research on 

multirobot system control that made use of adaptive techniques. We have looked at (1) the use of learning (perpetual adaptation) to make 

multi-robot systems adjust to environmental and individual robot capability changes, and (2) the use of evolution to develop group behaviors. 

 

Introduction 

The ability to deploy huge numbers of low-cost 

robots for duties like surveillance and search has just 

become viable because to advancements in robotics. 

However, coordinating a group of robots to carry out 

such jobs is still difficult to do. Previous studies on 

multi-robot systems have taken a more generalized 

approach (see, for example, the works of Caoet 

al.[25] and Dudek et al.[7]).In contrast to these, the 

focus of this article is confined to the most up-to-date 

research on pattern creation and adaptability in multi-

robot systems.The report has two sections. Part one 

of this series examined research into the pattern 

formation challenge, or how to command a swarm of 

robots to build and hold a certain pattern. The second 

section discusses the research done on multi-robot 

systems that employed adaption techniques for 

command. Our research has focused on (1)the use of 

learning (continuous adaptation) to enable multi-

robot systems to react to variations in both the 

environment and the capabilities of individual robots, 

and (2)the application of evolution to the generation 

of collective behaviors. 
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Pattern formation in multi-robot 

systems 

Coordinating a collection of robots into and keeping 

them in a predetermined arrangement (such a wedge 

or a chain) is the pattern formation challenge.Search-

and-rescue operations, landmine disposal, remote 

terrain and space research, satellite array 

management, and unmanned aerial vehicles (UAVs) 

are only few of the current areas of use for pattern 

creation.Cooperative actions among members of 

different animal species have also been shown to 

result in pattern creation. In these cases, animals 

either maintain a consistent orientation and distance 

from one another while on the move or cover an area 

with as much uniformity as feasible.Animals often 

develop patterns, and bird flocks, fish schools, and 

ant chains are just a few examples[18]. 

We divide the research on pattern creation into two 

categories. The first set of investigations include a 

centralized unit that manages the team and issues 

orders to each robot individually. Methods for 

forming distributed patterns to achieve coordination 

compose the second category. 

Centralized pattern formation 

A computational unit monitors the whole group and 

arranges the members' movements appropriately in 

centralized pattern creation methods[3, 13, 23, 24]. 

Each robot's motion is then sent to it through some 

kind of network.Coordinated movement of many 

robots along a predetermined route is proposed by 

Egerstedt and Hu[13]. Separation between route 

planning and tracking is achieved. It's centralized, 

and the monitoring of fictitious landmarks is 

performed independently. The robots are directed by 

a virtual leader whose course is calculated in 

advance. They used it to get a group of virtual robots 

to navigate around a triangle of obstacles. The robots 

in this case formed a triangle, and its corners 

navigated around an obstruction that had been placed 

in their path. The research demonstrates that the 

provided strategy stabilizes the formation error if the 

robots' tracking mistakes are constrained ortracking is 

done precisely.To get a flock of UAVs to fly in 

formation, Koo and Shahruz [23] suggest using a 

centralized path-planning technique. One, more 

competent UAV determines the course for the others 

to follow. Cameras and sensors are only available to 

the leader. Through a communication connection, it 

instructs the other UAVs on the paths they should be 

following. It is recommended that UAVs launch 

themselves in the direction of their trajectories and 

then latch onto them. Experiments investigate both a 

scenario in which UAVs take off one by one and 

another in which they all take off at once. The study's 

primary emphasis is trajectory computation.Belta and 

Kumar [3] provide a kinetic energy shaping 

centralized trajectory calculation system. They use a 

gradually varying kinetic energy meter rather than a 

constant one. The procedure provides smooth paths 

for a group of mobile robots to follow. Using a 

parameter, you may adjust how close the robots are 

to one another. However, the strategy is not scalable 

since it does not account for avoiding 

obstacles.Kowalczyk[24] details a target assignment 

technique for the formation building issue. In order to 

achieve the required configuration out of a dispersed 

collection of robots, the algorithm must first give 

each robot a targetpoint. Then it creates the priorities 

and paths the robots need to follow to go where 

they're going without colliding with each other. There 

is a buffer zone surrounding each robot's route where 

bots with lesser priority aren't allowed to go. The 

robot will wait for the higher priority robot to move 

out of the way if its path takes it through an area that 

is off limits to it. Both holonomic and non-holonomic 

robots are used to validate the approach. The 

technique presupposes the availability of a 

centralized processing power and global sensing 

capability. The method's potential for expansion 

evades the question. Strategies for centralized pattern 

creation presume the presence of a communication 

connection between the central unit and the 

individual robots, and depend on a single node to 

manage the whole group. Because of these 

presumptions, the centralized approach is more 

difficult to implement, less able to recover from 

errors, and less competent to manage a large fleet of 

robots. Decentralized pattern creation techniques 

provide an option. 

 

Decentralized pattern formation 

Communication and completeness of information 

known by robots impose a trade-offbetween precision 

and feasibility of forming and maintaining the pattern 

and the necessityof global information and 
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communication. Studies that require global 

informationor broadcast communication[29, 19, 12] 

may suffer from lack of scalability or highcosts of the 

physical setup but allow more accurate forming of a 

greater range of formations. 

On the other hand, studies using only 

localcommunication and sensor data[21, 22, 10, 5, 

17, 15, 9, 11] tend to be more scalable, more robust, 

and easier to build;but they are also limited in variety 

andprecision of formationsSugihara and Suzuki[12] 

achieved pattern formation by providing each robot 

theglobal positions of all others. In this study, an 

algorithm is developed for each pattern.The proposed 

method can uniformly distribute robots creating 

different patternformations (circles, polygons, line, 

filled circle, and filled polygon). It can also split a 

groupof robots into an arbitrary number of nearly 

equal sized groups. Despite the impressiveresults 

obtained by this decentralized algorithm, the global 

communication required toshare information among 

the whole group, makes it less scalableCarpin and 

Parker[19] introduced a cooperative leader following 

strategy for a teamof robots. The robots are able 

tomaintain a specific formation while 

simultaneouslymoving in a linear pattern and 

avoiding dynamicobstacles. The robots use local 

sensorinformation and explicit broadcast 

communication among themselves. The 

frameworkhandles heterogeneous teams, i.e. 

comprising of robots with different types of sensors, 

as well as homogeneous ones 

Two levels of behaviors were implemented for tasks: 

team-level and robot-levelbehaviors. Transitions are 

made when necessary among specific behaviors in 

these twolevels. For example, when a member of the 

team faces an obstacle, the whole teamwaits together 

with that member for it to go away for a certain 

amount of time. If thistime is exceeded that member 

circumnavigates the obstacle and the team returns to 

itsmain task of moving in a formationBalch and 

Hybinette [21, 22] proposed a different strategy for 

robot formation thatis inspired from the way 

molecules form crystals. In this study, each robot has 

severallocal attachment sites that other robots may be 

attracted to. This concept is similarto molecular 

covalent bonding. Possible attachment site 

geometries include shapesresembling where the robot 

is the center of the shape and the attachmentsites are 

the ends of the line segments. Various robot 

formation shapes result fromusage of different 

attachment site geometries just as different crystal 

shapes emergefrom various covalent bond 

geometries. When a teamof robots moving in a 

formation,they avoid the obstacle by splitting around 

it and rejoining afterpassing. This approachis scalable 

to large robot teams since global communication is 

not used and that local 

sensing is sufficient to generate effective formation 

behaviors in large robot teams. 

Another method similar to crystal generation which 

employs a form of probabilisticcontrol is proposed by 

Fujibayashi et al.[11]. This study makes use of virtual 

springsto keep two agents in close proximity. Each 

pair of robots within a certain range ofeach other, are 

connected via a virtual spring. Each agent is 

classifiedby the numberof neighboring agents within 

this range (number of connections). The robots 

formtriangle lattices that have random outlines. To 

obtain a desiredoutline, the virtualsprings among 

some robots are broken with a certain probability. 

The candidatespringsto be broken are chosen 

depending on the number of connections the robots it 

joinshave. This breaking preference and the 

probability of breakingchanges from formationto 

formation. The algorithm uses only local information 

and is decentralized. Onedisadvantage of the method 

is the difficulty ofchoosing custom parameters for 

eachformation. 

 

A graph-theoretic framework is proposed by 

Desai[10] for the control of a teamof robots moving 

in an area with obstacles while maintaining a specific 

formation.The method uses control graphs to defined 

behaviors of robots in the formation. Thisframework 

can handle transitions between formations, i.e. 

between control graphs.Proofs of the mathematical 

results required to enumerate and classify control 

graphsare given. Although the computations for 

control graphs increase with the number ofrobots,the 

fact that these computations are decentralized allows 

the methods describedto be scalable to large groups 

Another graph-based approach to moving in 

formation problem is introduced byFierro and 

Das[17]. They proposed a four-layer modular 

architecture for formationcontrol. Group control layer 

is the highest layer generating a desired trajectory 

forthe whole group to move. Formation control layer 

implements a physical network, acommunication 

network, and a computational network (control 

graph). It maintains theformation by using local 

communication and relative position information. 

Kinematicscontrol layer deals with the required linear 

and angular velocities of robots. Finally, thedynamic 

control layer handles the task of realizing the 

necessary speeds given by the 

kinematics control layer. This four-layer architecture 

provides an abstraction amongtasks required at 

different levels. For example, a robot with different 

mass, inertia,and friction can be used only by 
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changing the dynamic control layer. Furthermorea 

modular adaptive controller is described which can 

manage control of robots withunknown dynamics and 

learns the robot dynamics on-the field. Hence using a 

different robot requires no change in the system. The 

method described is scalable (controlalgorithms scale 

linearly) and flexible (it allows various formations). 

Centralized anddecentralized versions of control 

graph assignment algorithm is also described in the 

study. 

only local communication and sensor information. 

Obstacle avoidance is also providedin this method. It 

extends ordinary behavior-based approaches with the 

application ofsocial roles that represent positions in 

the formation and with the use of local 

communication 

to improve performance. As new agents join the 

formation, the shape is fixed bylocal communications 

and role changes where necessary. The locally 

communicatedinformation reaches the leader, i.e. the 

front most robot, which knows the whole shapeof the 

current formation and which decides on the changes 

necessary. This informationis then propagated to the 

necessary followers, and the formation is updated. 

There is noneed to predefine social roles or positions 

for robots. Everything is done dynamicallyas the 

formation grows. This method supports various 

formations and also switchingbetween them, 

therefore it is flexible as well as being scalable and 

local.Dudenhoeffer and Jones[5] designed and 

implemented a tool to model and simulatecollective 

behavior and interactions of a group of thousands of 

robots. Usingthis simulationtool, the problem of 

hazardous materialdetection by thousands of micro-

robotsscattered around a region is tackled. Social 

potential _elds are utilized for coordinatedgroup 

behavior where robots are desired to stay at a specific 

distance from others toobtainoptimum coverage of 

the area. They are also required to wander in this 

formationto search other parts. The desired behavior 

is obtained by using a subsumption architecture.This 

study also validates the proposed method in cases 

where it is possible foragents to die and where agents 

have imperfect sensorreadings. The method uses 

onlylocal information and is scalable to very large 

groups of robots.Mataric and Fredslund [9] used local 

information to establish and maintain 

formationsamong robots. Each robot has a unique ID 

and a designated friend robot whichit can see through 

a .friend sensor.. There is also minimal 

communication betweenrobots: heartbeat signals 

(robots broadcast their IDs), swerve signals 

(changing direction),and formation messages. Each 

robot can learn the number of robots in formationand 

the type of formation using broadcasted messages. 

For each formation, each robothas a specified angle 

which determines the angle it should keep between 

its front directionand the direction of its friend. This 

angle is calculated locally. The detailsof this 

calculation are given in [9]. This study accomplishes 

the task of establishingand maintaining formations 

using only local information and minimal 

communication. 

However the possible formations are limited to chain-

shaped ones that do not make abackward curve 

One of the major reasons why multi-robot systems 

are preferred over single-robotsystems is their 

robustness in performance. The robustness of multi-

robot systems can 

be improved by incorporating adaptation mechanisms 

that can respond to continuingchanges in the 

environment as well as in the capabilities of 

individual robots. 

 

Adaptation in multi-robot systems 

In this section we review the studies that used 

adaptation strategies in controlling 

multirobotsystems. Specifically we have investigated 

(1) how learning (life-long adaptation)is used to 

make multi-robot systems respond to changes in the 

environment as well inthe capabilities of individual 

robots, and (2) how evolution is used to generate 

groupbehaviors. 

In multi-robot systems, adaptation can be achieved at 

two levels: group level andindividual level. We 

classify the recent studies into these levels and 

review them in thefollowing subsections 

 

Individual level adaptation 

Large state spaces render reinforcement learning 

models worthless. One solution to this issue is to use 

many simpler learning modules for various states 

rather than one complex one. Research by Takayashi 

[[26]] is one example.A scaled-down version of the 

robo-soccer challenge serves as the issue examined in 

his research. It is expected that adversaries would use 

a variety of strategies, each tailored to its own 

strengths and weaknesses.Predictors and planners are 

the two main types of modules. Based on the 

opponent's past conduct, the predictor can guess what 

the opponent will do next. The Planner, on the other 

hand, will create the best possible next step in light of 

this forecast. Competing prediction algorithms 

improve accuracy, with only the best prediction 

module receiving reinforcement. This generates 

modules tailored to counteract certain enemy 

strategies.This study applies the concept of ball 
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chasing against an unpredictable moving 

opponent.The outcomes are superior than those of 

studying a single module on its own. Given enough 

trials, reinforcement learning converges to the best 

policy, but in practice, this number of trials is 

typically too big to be practical. To accelerate the 

learning process, Piao[20] introduces a new 

reinforcementlearning algorithm. Rule learning, 

reinforcement learning, and action level selection 

come together to form this technique, which may be 

thought of as a set of behavioral rules for a given 

condition.Instances, which are states that have 

traversed a certain time range, make up the rule 

base.After each epoch, we use the data we've 

collected to assign labels to these occurrences. The 

data from these examples is then used to formulate 

rules. These guidelines serve as a prohibition against 

pointless or destructive behavior. Hard-coded rules 

guide the overarching strategy of robots and are used 

in action level selection. Together, sensor data and 

action level are supplied into the reinforcement 

algorithm to produce state information.The 

reinforcement learning module then learns to produce 

actions based on the state that has been generated 

using sensory data and the action level. To solve the 

robosoccer challenge, Piao uses this strategy. He 

claims enhanced performance on learning with 

several robots over conventional Q learning, but only 

if only one agent is learning at a time. 

Since reinforcement learning was designed to work 

with isolated entities, it lacks tools to facilitate social 

behaviour. In his work, Tangamchit[16] addresses 

this issue. The paper discusses the split between 

systems that are action-based and task-

based.Reactive behaviors are generated by action 

level systems in order to address issues. However, 

task-level systems create tasks that are made up of 

smaller tasks that may be delegated to different 

agents. Cooperation, according to Tangamchit, is 

defined as "task level activity" in which robots may 

share resources and obligations.There are two 

potential incentive systems to think about: global and 

local. Each unit's reinforcement in a global 

rewardscheme is shared among all members of the 

group. under contrast, under a local incentive system, 

the prize is not shared across the group's individuals. 

Q-learning and Monte Carlolearning are two of the 

learning algorithms taken into account. When 

evaluating the worth of each action over all states, Q-

learning utilizes cumulative discounted rewards 

whereas Monte Carlo learning uses averaging. The 

episode's reward is the same for every given pair of 

state actions. This strategy is less efficient because it 

does not take into account the impact of later acts in 

an episode that are more likely to result in a positive 

outcome. 

In this research, we focus on a specific subtype of the 

foraging issue known as puck collecting behavior. 

Pucks can only be collected and placed in the bin by 

robots. Except for the action of depositing a puck, all 

other actions result in a negative reward. There is a 

puck-free "home" zone, a puck-filled "deposit" zone, 

and pucks all over the field. This is accomplished 

with the help of two quite different robots.The first 

robot has superior mobility and collection capabilities 

in non-home environments. The second robot can 

more quickly complete the bin depositaction, but can 

only travel inside its home territory. For the best 

results, the robots must work together to transport the 

pucks back to the home area and then deposit them. 

Learning at the task level is necessary. 

The findings show that local incentives or discounted 

cumulative rewards, like those used in Q learning, are 

ineffective for teaching cooperation at the task level. 

Cooperative strategies for this job emerge instead 

when global incentives are combined with average 

rewards.To include domain knowledge, 

reinforcement learning just needs feedback for the 

applied sequence of actions. This is often 

implemented via the selection of reward 

functions.The role of rewards in a foraging activity is 

discussed by Mataric[14]. Although mathematically 

straightforward to examine, single objectives create 

difficulties in learning and development. 

It's challenging to transform actions that are 

conditional or sequential into a single objective 

function. Instead, subgoals of the agent are described 

by many goal functions. Estimators of future 

advancement are another development. These 

estimators provide an approximate assessment of 

progress toward a certain objective. Both of these 

enhancements (proper subgoal design and subgoal 

progress estimation) significantly boost the topic's 

use of domain knowledge. Furthermore, they provide 

far more reinforcement than conventional approaches 

by rewarding not just the end result but also smaller, 

more manageable achievements along the 

way.Robots performing a real-world foraging activity 

are used to evaluate the effectiveness of the new 

strategy. Robots 
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have the job of bringing pucks back and forth from 

the rink. Robots are also expected to maintain a 

presence in the house at regular times. To make the 

robots' state space of the learning issue more 

comprehensible, we teach them some basic reactive 

actions. These actions include dropping pucks while 

at home, avoiding barriers, and retrieving pucks when 

they are in close proximity to the agent. The ideal 

strategy is produced by hand and then compared to 

the experimental results. The results support the 

usefulness of both intended changes. The study 

makes a fascinating point about the disruption that 

agents may produce. The rate of learning and the 

degree of convergence suffer as the number of 

learning agents increases. 

Cooperation is achieved in Parker's[6] L-ALLIANCE 

model via the employment of numerous behavior sets 

and global communications. A observer is assigned 

to each behavior set. These watchdogs verify the 

prerequisites for triggering behavior sets and evaluate 

the agent's and the group's abilities. Parker presents 

two drives, impatience and acceptance.Both 

impatience and acceptance reflect a propensity for a 

robot to take up a duty that was assigned to another 

robot. The L-ALLIANCE design shifts these intrinsic 

incentive factors as the learner progresses.Due to the 

design, robots must constantly update one another on 

their present status. This design presupposes that a 

robot is responsible for all potential environmental 

modifications that emerge from an activity it states. 

The issue of credit allocation is therefore 

resolved.The L-ALLIANCE design has the desirable 

features of dealing with heterogeneous groups and 

being resilient in the face of failures or shifts in robot 

capability. In contrast, L-ALLIANCE's assumption-

heavy approach to the credit assignment issue 

necessitates widespread communication. 

According to Goldberg et al. [4,] AMM (Augmented 

Markov Models) are proposed.The added data 

regarding transitions in AMMmake it a superior 

Markov model. Instead of producing policy, it is 

meant to learn from environmental statistics. In 

contrast to HMMs, which assume that the outcomes 

of a given set of actions are unknown, AMMs assume 

that all of the action's details are known. 

However, unlike traditional Markov models, AMMs 

are constructed in stages. They can mimic such 

higher-order transitions in the system with more 

accuracy thanks to this incremental buildup. Their 

research integrates AMMs with BBR [2]. Multiple 

AMMs, each with a unique time scale, keep an eye 

on each behavior. This enables the system to react 

quickly or slowly to changes in its surroundings. 

Group level adaptation 

By its very nature, reinforcement learning requires a 

centralized server, making it impractical for use in 

multi-robot setups. A compromise between 

centralized and decentralized learning is proposed in 

Yanli's study[27] on opportunistically cooperative 

neural learning. When it comes to purely 

decentralized learning models, each agent maintains 

its knowledge of the subject to itself. Because of this, 

the group's performance suffers greatly because of 

the lack of common experience. By using 

'opportunistic' search, Yanli is able to address this 

issue. The notion of survival of the fittest in genetic 

algorithms is conceptually comparable to this 

approach. Low-t networks learn from high-t ones, 

and vice versa. 

Three cases—a centralized one, a distributed one, and 

an opportunistically dispersed one—are compared in 

Yanli's study. These hypotheses are tested on a 

seeking task in which agents are tasked with covering 

as much ground in a certain area as they can without 

making too many trips back and forth. Collaboration 

seems to be the most effective tactic. Each agent 

plans its next step in advance, and they all take action 

at once. In addition, agents often discuss future 

moves with one another. To anticipate the behavior 

of other agents, each agent uses these plans. These 

predictions are learning machines. When it is 

possible to exactly forecast the future activity of 

other agents, rewards may be determined. 

The findings demonstrate that central learning 

outperforms all other techniques.However, there are a 

number of issues with fault-tolerance and 

communication that plague central learning.Both 

central learning and OCL (opportunistically 

cooperative learning) perform noticeably better than 

the distributed-only situation, with OCL coming out 

on top. 

Agah[1] incorporates both personal and social change 

into his writing. To solve the multi-robot learning 

challenge, Agah employs a method called Tropism 

Architecture. As a bridge between perception and 

behavior, tropismarchitecture facilitates education. 

Each tropism is characterized by a predisposition to 

react to certain stimuli. Learned tropisms (i.e. state-



ISSN:1300-669 

Volume 18 Issue 2 July 2022 
 

 

action-tendency pairings) are stored in the tropism 

architecture. Agents make choices by applying 

tropisms to the present situation. Based on the 

tropism values, a random process decides what steps 

to take. This architecture employs both supervised 

and unsupervised learning methods. Every person's 

own learningScheme incorporates environmental 

input into its set of tropisms.Changes include 

introducing a new legitimate action for the present 

state, raising the tropism value for a reinforced pair, 

and switching actions when a negative reinforcement 

or invalid action is detected. 

In population learning, we encode each agent's 

tropism list as a sequence of bits with varying 

lengths. A genetic algorithm is used to these 

sequences of binary digits. Each individual's fitness is 

determined by adding up all of the positive 

reinforcement it has received during its own process 

of learning.Even without reinforcementpropagation 

as in Q-learning, the results show that this dual 

approach is effective. Behaviours cannot always be 

established in advance, and sometimes even 

behaviours need to be taught. The movement of 

hexapods is one example. Parker[8] investigated how 

hexapod robots may learn to do a box-pushing 

activity together. Since a hexapod robot's movement 

requires more complex procedures than a wheeled 

robot's, this is his primary challenge. Parker designed 

CyclicGenetic Algorithms (CGA), which can manage 

the complex control needs at hand, for this 

endeavor.The goal of CGAs is to evolve not only 

basic stimulus-response pairings, but rather a series 

of activities. CGA encrypts a sequence of activations 

that the agent must perform repeatedly.The fitness of 

each chromosome is determined by running a 

computer simulation in which the chromosome under 

evaluation is coupled with the optimal solution to the 

job at hand. The fitness of the chromosome is 

evaluated according to the collective's level of 

success. Using a deliberate approach yields positive 

results. 

For robots to work together, they must be able to 

coordinate their efforts with one another.The earliest 

forms of cooperation based their interactions on 

models of peer communication. This may be 

necessary for an ideal solution, but it will demand 

more processing power and data transfer capacity as 

the number of robots in the system grows.While 

reducing bottlenecks in communication, local 

communication does not eliminate them entirely. One 

approach to breaking through the communication 

barrier is to use stigmergy. Scalability is achieved by 

an implicit communication system, which has been 

seen in social insects. In order to facilitate 

collaboration between groups of robots, Yamada[28] 

has developed a functional implementation of an 

implicit communicationsystem. The difficulty of 

pushing a box is addressed using this method. An 

illuminated target indicates success, and it is thought 

that the robots can sense their own presence, the 

presence of other robots, and the existence of 

barriers. In this setup, walls are portrayed as rigid 

cubes that are ultimately disregarded. In order to 

address the issue of implicit communication, the 

writers create fictitious scenarios. Abstrat models of 

the world's state are calculated based on the data from 

the sensors and some very rudimentary storage 

mechanisms (such as counters for certain sensor 

readings).The robots' behavior is predetermined by a 

series of rules. Sensor data is used to inform the 

application of these regulations. 

Conclusion 

We reviewed the recent studies on the pattern 

formation and adaptation in multi-robotsystems. The 

pattern formation studies are classified into two 

groups. The first groupincludes studies where the 

coordination is done by a centralized unit that can 

overseethe whole group and command the individual 

robots accordingly. The second groupcontains 

distributed pattern formation methods for achieving 

the coordination. Thestudies that used adaptation 

strategies in controlling multi-robot systems were 

classifiedinto two levels: group level and individual 

level. 
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